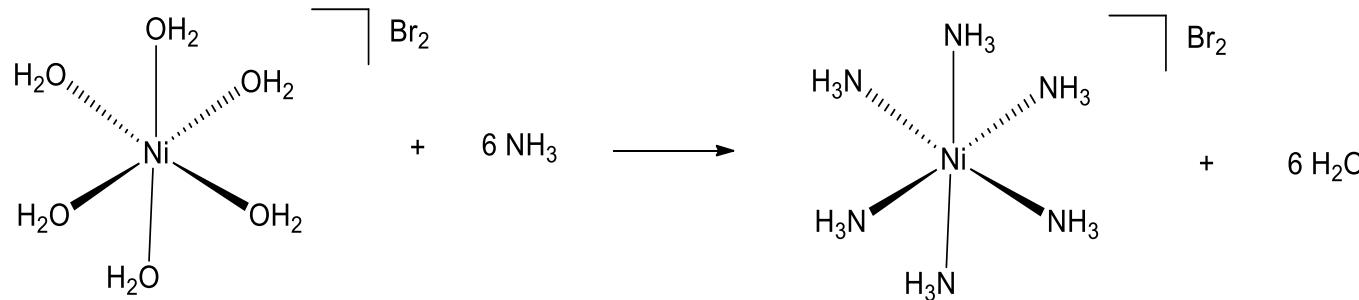


THE PERIODIC TABLE

SYMBOL
1 ATOMIC NUMBER
2 ATOMIC WEIGHT
3 NAME

() = ESTIMATES

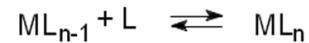

1 IA		18 VIIIA															
H	He	2 IIA		3 IIIA		4 IVA		5 VA		6 VIA							
Li 3 6.94 Lithium	Be 4 9.01 Boron	H 1 1.008 Hydrogen		Na 11 22.99 Sodium	Mg 12 24.31 Magnesium	Al 13 26.98 Aluminum	Si 14 28.09 Silicon	P 15 30.97 Phosphorus	S 16 32.07 Sulfur	Cl 17 35.45 Chlorine	Ne 18 20.18 Neon						
K 19 39.12 Potassium	Ca 20 40.08 Calcium	Sc 21 44.96 Scandium	Ti 22 47.88 Titanium	V 23 50.94 Vanadium	Cr 24 52.00 Chromium	Mn 25 54.94 Manganese	Fe 26 55.85 Iron	Co 27 58.93 Cobalt	Ni 28 58.69 Nickel	Cu 29 63.55 Copper	Zn 30 65.39 Zinc	Ga 31 69.72 Gallium	Ge 32 72.61 Germanium	As 33 74.92 Arsenic	Se 34 78.95 Selenium	Br 35 79.90 Bromine	Kr 36 83.80 Krypton
Rb 37 85.47 Rubidium	Sr 38 87.62 Strontium	Y 39 88.91 Yttrium	Zr 40 91.23 Zirconium	Nb 41 92.93 Niobium	Mo 42 95.94 Molybdenum	Tc 43 (97.9) Technetium	Ru 44 101.07 Ruthenium	Rh 45 102.91 Rhodium	Pd 46 106.42 Palladium	Ag 47 107.87 Silver	Cd 48 112.41 Cadmium	In 49 114.82 Indium	Sn 50 118.71 Tin	Sb 51 121.79 Antimony	Te 52 127.58 Tellurium	I 53 136.90 Iodine	Xe 54 131.29 Xenon
Cs 55 132.91 Cesium	Ba 56 137.33 Barium	La 57 138.91 Lanthanum	Hf 72 178.48 Hafnium	Ta 73 180.96 Tantalum	W 74 183.85 Tungsten	Re 75 186.21 Rhenium	Os 76 190.2 Osmium	Ir 77 192.27 Iridium	Pt 78 195.08 Platinum	Au 79 196.97 Gold	Hg 80 200.53 Mercury	Tl 81 204.28 Thallium	Pb 82 207.2 Lead	Bi 83 208.58 Bismuth	Po 84 (209) Polonium	At 85 (223) Astatine	Rn 86 (222) Radium
Fr 87 223.02 Francium	Ra 88 226.03 Radium	Ac 89 227.03 Actinium	Rf 93 (261) Rutherfordium	Db 106 (265) Dubnium	Sg 106 (262) Sergoron	Bh 107 (263) Bohrium	Hs 108 (265) Hassium	Mt 109 (266) Moscovium	Ununennium 110 Ununtrium 111 Ununpentium 112 Ununhexium	Ununtrium 113 Ununhexium 114 Ununpentium	Ununpentium 115 Ununhexium 116 Ununhexium	Ununhexium 117 Ununpentium 118 Ununpentium	Ununpentium 119 Ununpentium 120 Ununpentium	Ununpentium 121 Ununpentium 122 Ununpentium	Ununpentium 123 Ununpentium 124 Ununpentium	Ununpentium 125 Ununpentium 126 Ununpentium	Ununpentium 127 Ununpentium 128 Ununpentium
HEAVY METALS		HEAVY METALS															

LANTHANIDES											
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm
58 140.12 Cerium	59 140.91 Praseodymium	60 144.24 Neodymium	61 (145) Promethium	62 150.38 Samarium	63 152.87 Europium	64 158.28 Gadolinium	65 160.93 Terbium	66 162.93 Dysprosium	67 164.90 Holmium	68 167.28 Erbium	69 168.13 Thulium
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md
90 228.04 Thorium	91 231.04 Protactinium	92 233.03 Uranium	93 237.06 Neptunium	94 (240) Plutonium	95 243.06 Americium	96 (247) Curium	97 (249) Berkelium	98 (251) Californium	99 (253) Einsteinium	100 (254) Fermium	101 (257) Mendelevium
Yb	Lu										
71 174.97 Lutetium	72 175.04 Lanthanum										

Week 6

Review of Chapter 2

Ligand substitution reactions and formation constants



$$K_f^1 = \frac{[ML]}{[M] \cdot [L]}$$

$$K_f^2 = \frac{[ML_2]}{[ML] \cdot [L]}$$

.....

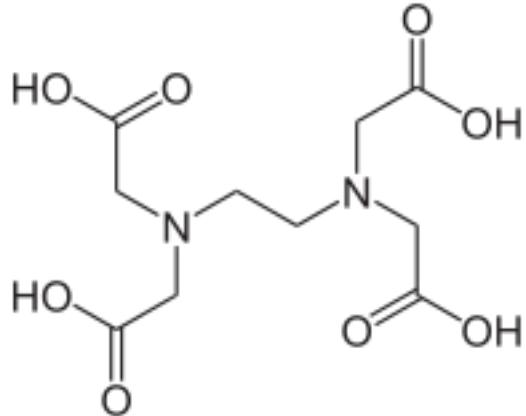
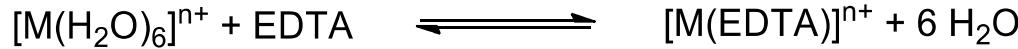
$$K_f^n = \frac{[ML_n]}{[ML_{n-1}] \cdot [L]}$$

$$\beta_n = \frac{[ML_n]}{[M][L]^n} = K_1^f \cdot K_2^f \cdots K_n^f$$

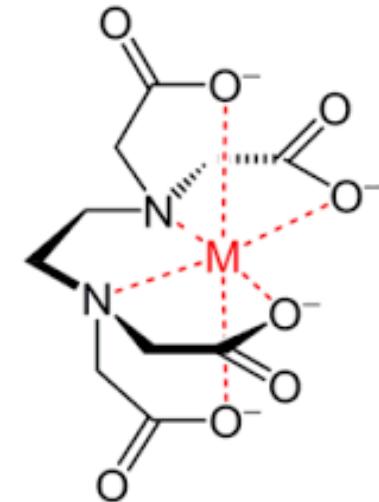
K_f tells us:

Which way the reaction proceeds

Which product is more stable



Formation constants of Ni^{2+} ammines, $[Ni(NH_3)_n(OH_2)_{6-n}]^{2+}$

n	pK _n	K _n	K _n /K _{n-1}
1	-2.72	524.8	
2	-2.17	147.9	0.28
3	-1.66	45.71	0.53
4	-1.12	13.18	0.56
5	-0.67	4.677	0.53
6	-0.03	1.07	0.42

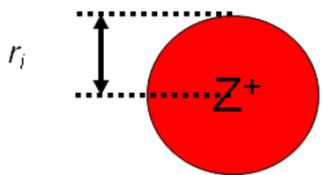

$$K_1 > K_2 > K_3 > K_4 > K_5 > K_6$$

K_n is usually expressed as pK_n

Formation constants of K_f^1 for various metal-EDTA complexes

Metal ions	Log (K_f^1)
Ag^+	7.3
Ca^{2+}	10.8
Cu^{2+}	18.7
Ni^{2+}	18.6
Fe^{2+}	14.3
Fe^{3+}	25.1
Co^{2+}	16.1
Co^{3+}	36.0
V^{2+}	12.7
V^{3+}	25.9

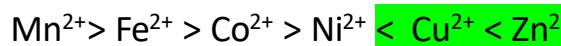
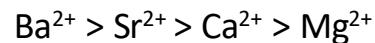
Take home messages:

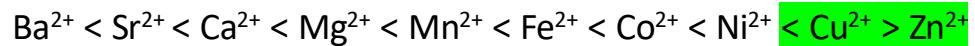

- Very large K_f value indicates reactants are used up
- EDTA complex is extremely stable relative to water complex
- Charge density of metal goes up so does K_f
- Indicates relative differences in stability of complexes

$$\Delta G^\circ = -RT\ln K, R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$$

$$\Delta G^\circ = \Delta H^\circ - T\Delta S^\circ \quad \text{enthalpic stabilization or entropic stabilization}$$

How to determine the relative differences in stability in complexes



- 1) Charge and size of metals (charge density) – electrostatic interactions of spherical metals and ligands


- higher the Z^2/r_i typically the larger the K_f
- Applies to hard spherical ligands and metals

- 2) Irving Williams Series – for first row transition metals in a 2+ oxidation state

Ionic radii

According to Irving Williams Series

- 3) Classification of metal and ligand with regard to hard soft acid base chemistry

Ralph Pearson's Hard Soft Acid Base Theory

Table showing the nature of ligands and metals

Hard	Class A	Intermediate	Soft	Class B
<i>Ligands</i>				
	F^- , O^{2-} , OH , OH_2 , OHR , RCOO^- , NH_3 , NR_3 , RCN , Cl^- , NO_3^- , CO_3^{2-} , SO_4^{2-} , PO_4^{3-}	Br^- , SR , NO_2^- , N_3^- , SCN^- , $\text{H}_5\text{C}_5\text{N}$	PR_3 , SR_2 , SeR_2 , AsR_3 , CNR , CN^- , SCN^- , CO , I^- , H^- , R^-	
<i>Metal Ions</i>				
	Mo^{5+} , Ti^{4+} , V^{4+} , Sc^{3+} , Cr^{3+} , Fe^{3+} , Co^{3+} , Al^{3+} , Eu^{3+} , Cr^{2+} , Mn^{2+} , Ca^{2+} , Mg^{2+} , Be^{2+} , K^+ , Na^+ , Li^+ , H^+	Fe^{2+} , Co^{2+} , Ni^{2+} , Cu^{2+} , Zn^{2+} , Pb^{2+}	Cu^+ , Rh^+ , Ag^+ , Au^+ , Pd^{2+} , Pt^{2+} , Hg^{2+} , Cd^{2+}	

Table showing the nature of ligands as you go down the periodic chart.

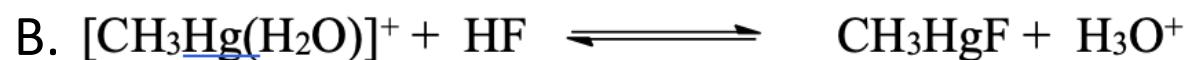
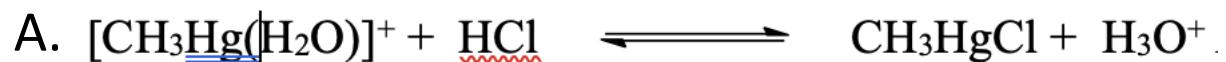
Complexes of Class A Metal Ions	Ligands			Complexes of Class B Metal Ions
strongest	R_3N	R_2O	F^-	weakest
	R_3P	R_2S	Cl^-	
	R_3As	R_2Se	Br^-	
weakest	R_3Sb	R_2Te	I^-	strongest

Trends:

- Hard metals:** high oxidation states > 2 and early transition metals
- Soft metals:** late transition metals and low-oxidation states
- Intermediate metals:** first-row and $2+$ oxidation state
- Hard ligands:** ligands with donors that are N, O, or halides.
- Soft ligands:** are carbon donors or elements found in the second or later rows of the p-block
- Polarizability and hence softness increases going down the periodic chart.

If a mixture of CO and NH₃ is added to a solution containing Fe(0), which ligand will preferentially bind to Fe?

- A. CO
- B. NH₃

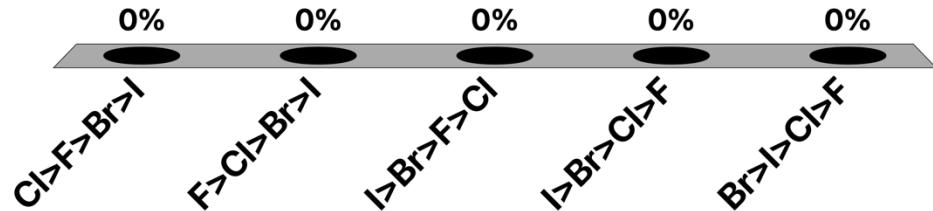
If a mixture of CO and NH₃ is added to a solution containing Fe(III), which ligand will preferentially bind to Fe?

- A. CO
- B. NH₃

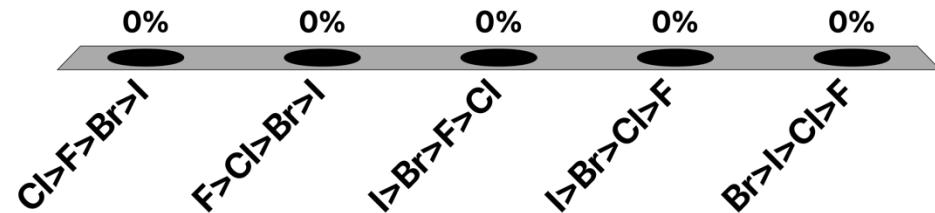
One reaction favors products and one reaction favors reactants. State which reaction favors products; explain your answer.

A. Reaction A

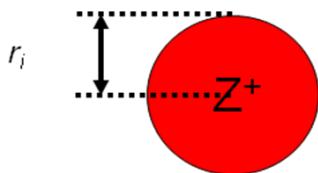
B. Reaction B



One reaction favors products and one reaction favors reactants. State which reaction favors products; explain your answer.

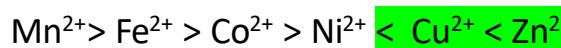
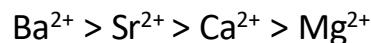

What do you expect the trend to look like for Co^{3+} and I^- , Br^- , Cl^- , and F^- . Please rank the complexes formed in the order of stability.

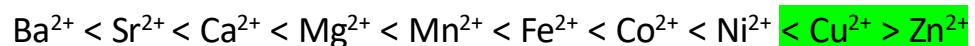
- A. $\text{Cl}^- > \text{F}^- > \text{Br}^- > \text{I}^-$
- B. $\text{F}^- > \text{Cl}^- > \text{Br}^- > \text{I}^-$
- C. $\text{I}^- > \text{Br}^- > \text{F}^- > \text{Cl}^-$
- D. $\text{I}^- > \text{Br}^- > \text{Cl}^- > \text{F}^-$
- E. $\text{Br}^- > \text{I}^- > \text{Cl}^- > \text{F}^-$


What do you expect the trend to look like for Ag^+ and I^- , Br^- , Cl^- , and F^- . Please rank the complexes formed in the order of stability.

- A. $\text{Cl}^- > \text{F}^- > \text{Br}^- > \text{I}^-$
- B. $\text{F}^- > \text{Cl}^- > \text{Br}^- > \text{I}^-$
- C. $\text{I}^- > \text{Br}^- > \text{F}^- > \text{Cl}^-$
- D. $\text{I}^- > \text{Br}^- > \text{Cl}^- > \text{F}^-$
- E. $\text{Br}^- > \text{I}^- > \text{Cl}^- > \text{F}^-$

How to determine the relative differences in stability in complexes



- 1) Charge and size of metals (charge density) – electrostatic interactions of spherical metals and ligands


- higher the Z^2/r_i typically the larger the K_f
- Applies to hard spherical ligands and metals

- 2) Irving Williams Series – for first row transition metals in a 2+ oxidation state

Ionic radii

According to Irving Williams Series

- 3) Classification of metal and ligand with regard to hard soft acid base chemistry

- 4) Strength of ligand as a **Bronsted base** - accepts H^+ -

- 5) Structural Aspects of ligands

- Chelate effects
- Size of chelate rings
- Steric effects of ligands
- Macrocyclic effect

How Bronsted basicity influences the stability of complexes

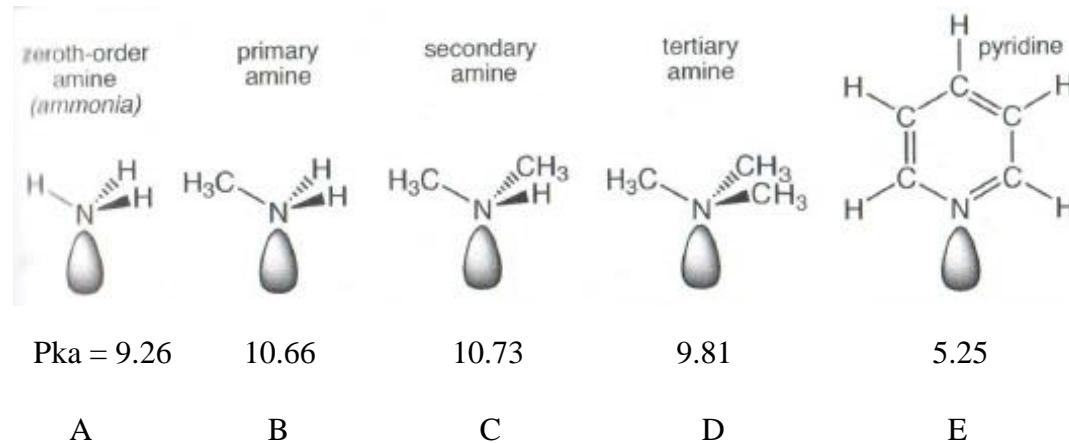
The stronger the **Bronsted Basicity** (ability to accept a H^+ and hence hard M cations) or the weaker the Bronsted Acidity **the more stable the complex with regard to hard (class A) metals**. The opposite is observed for soft metals, i.e. Ag^+ , as indicated by the log of the K_f in ().

Stability of Ag^+ complex F^- (0.3) < Cl^- (3.3) < Br^- (4.5) < I^- (8.0)

Acid strength $\text{HF} < \text{HCl} < \text{HBr} < \text{HI}$
 $\text{PK}_a \text{ HF} > \text{HCl} > \text{HBr} > \text{HI}$

Exercise: what do you expect the trend to look like for Co^{3+} ?

Answer: The opposite trend observed for Ag^+ b/c Co^{3+} is hard.

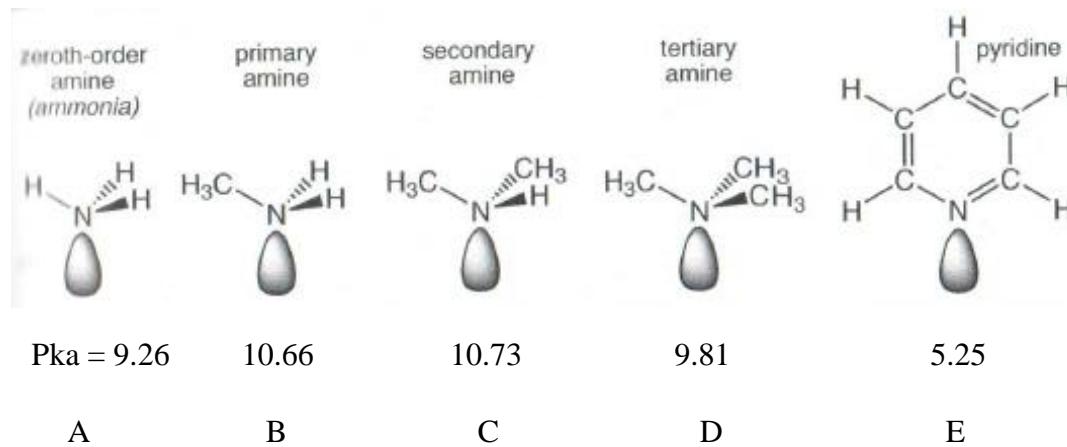

Acid dissociation constant

The acid dissociation constant for $\text{HA} \longrightarrow \text{H}^+ + \text{A}^- \quad \text{PK}_a = -\log \frac{[\text{H}^+][\text{A}^-]}{[\text{HA}]}$

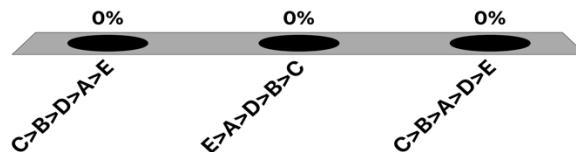
as such the lower the pK_a , the stronger the acid and hence the weaker the conjugate base.

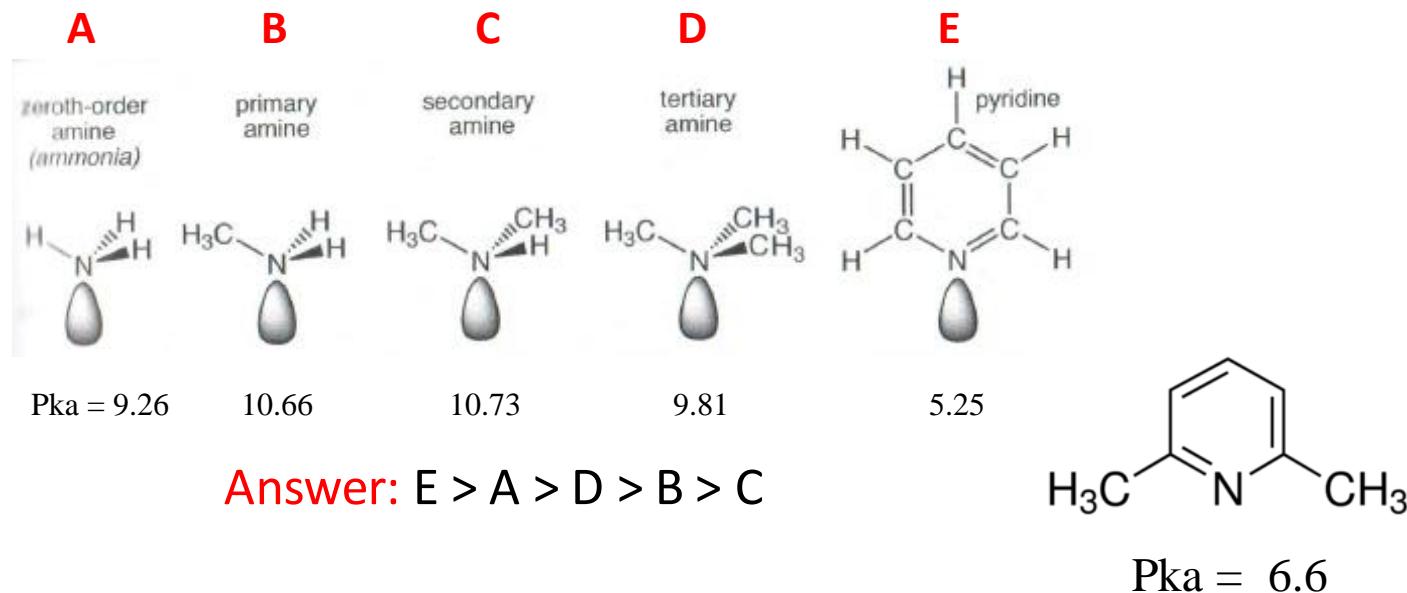
Rule: Ligands with higher PK_a 's tend to form stronger complexes with hard metals.

From the PK_a s of the conjugate acids, rank the following ligands in terms of their acid strength!



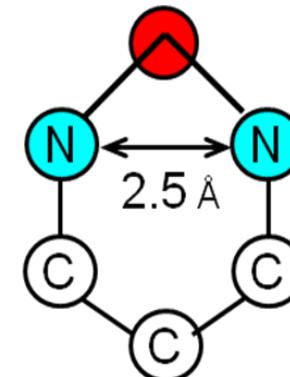
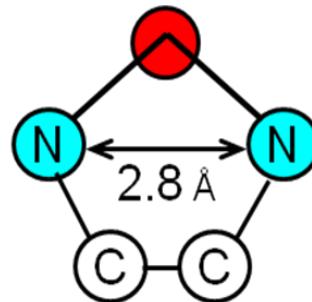
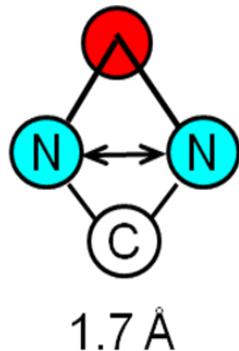
A. C>B>D>A>E


B. E>A>D>B>C

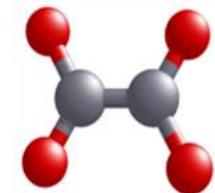

Based on what we just learned, which ligands do you think will form the strongest complex with Co^{3+} ? Please rank them.

- A. C>B>D>A>E
- B. E>A>D>B>C
- C. C>B>A>D>E

Exercise: From the Pk_as of the conjugate acids, rank the following ligands in terms of their acid strength!

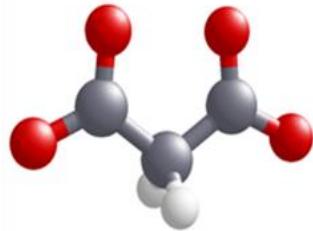



Exercise: Based on what we just learned, which ligand do you think will form the strongest complex with Co³⁺? Rank them.

Answer: C > B > A > D > E

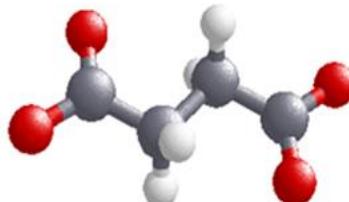

Exercise: Can anyone guess why this is the trend for the acidity with regard to the ammonia and the primary, secondary, and tertiary amines?

Answer: Sterically bulky ligands can counteract bases strength. This is reflected in the decrease in the Pk_a for the tertiary amine, which leads to a less stable complex.

Improved stability in 5-membered rings: The chelate effect


5-membered
oxalato

2-

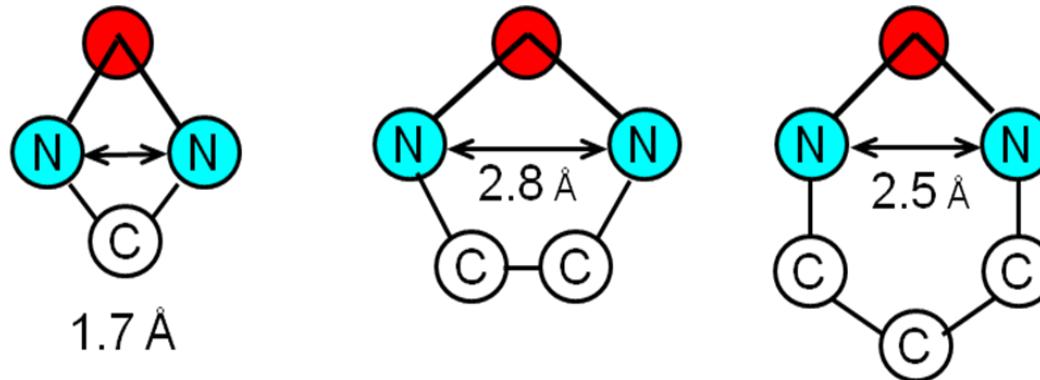

oxalato

6-membered
malonato

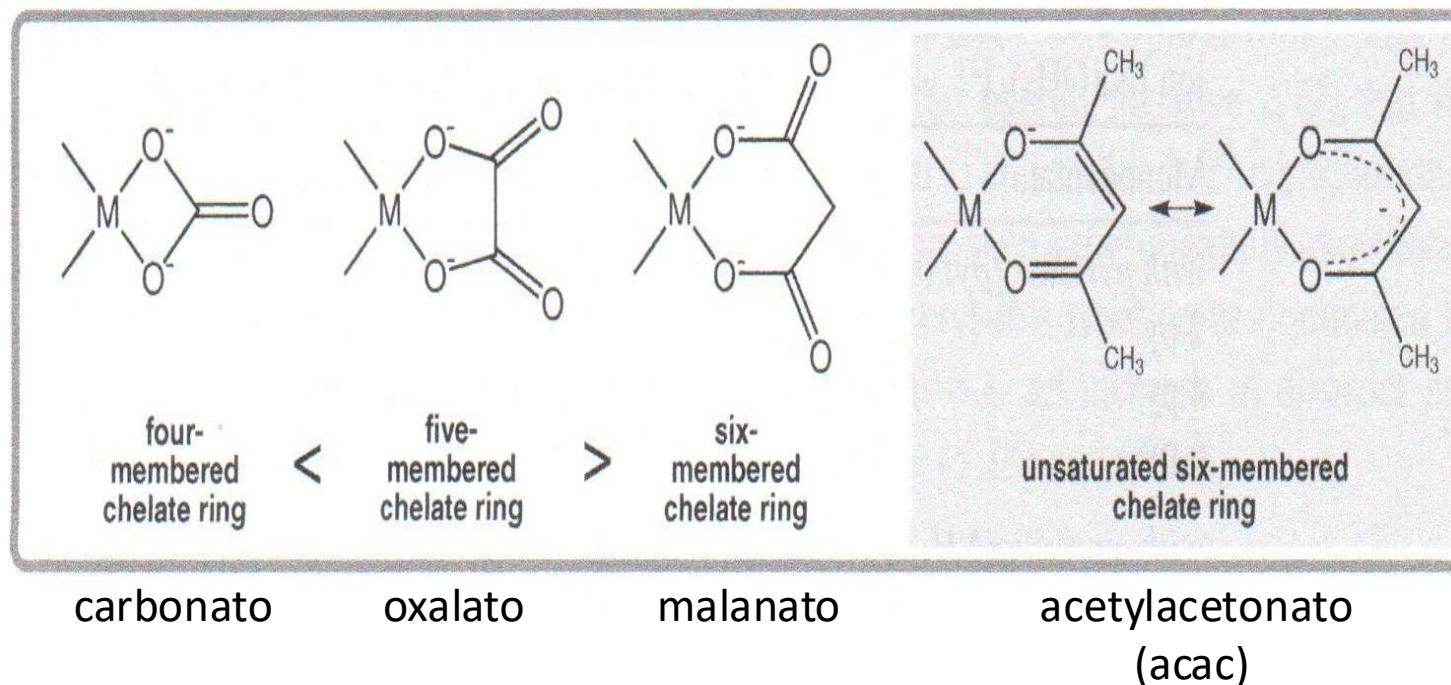
2-

7-membered
succinato

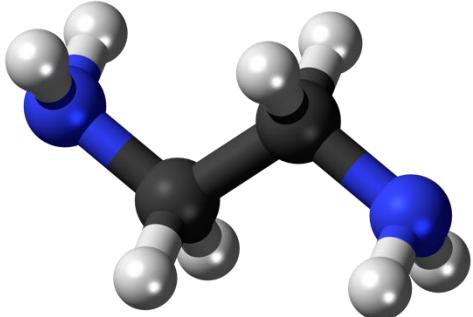
Log K_{stability}

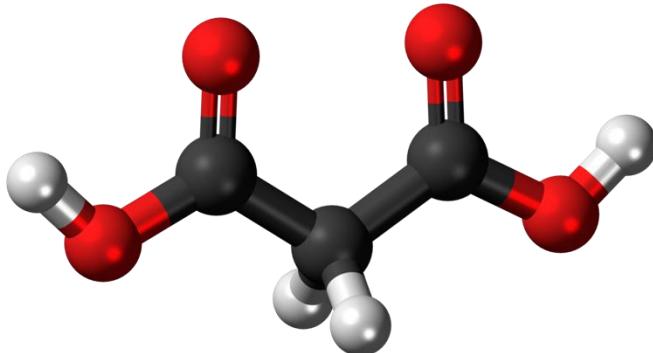

Mn Fe Co Ni Cu Zn

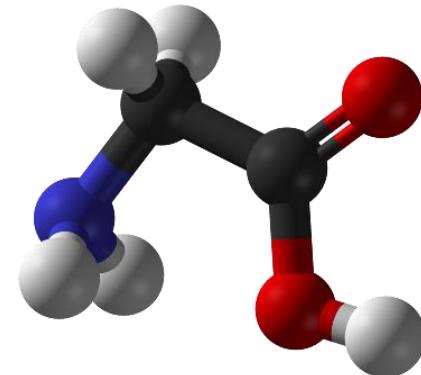
oxalato


malonato

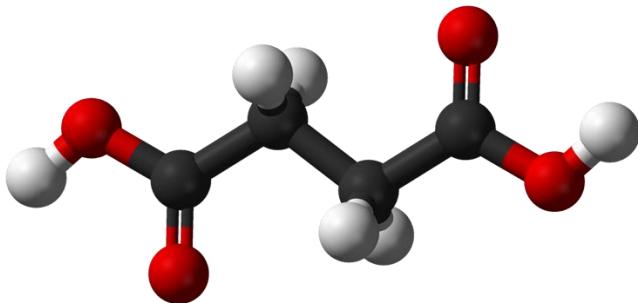
succinato


Improved stability in 5-membered rings: The chelate effect

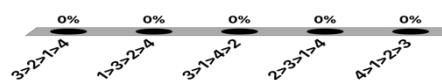

The exception – rings that contain unsaturated carbon atoms


Predict the order of stabilities for the following with Ni^{2+}

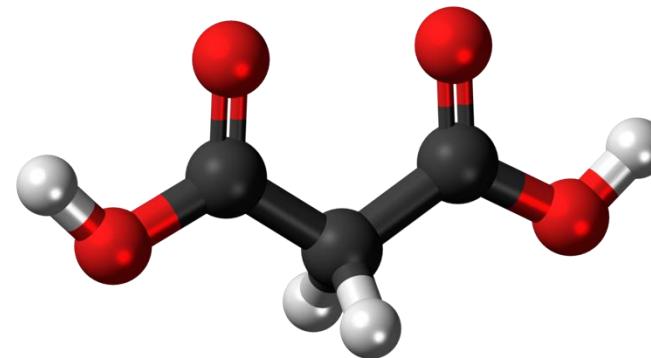
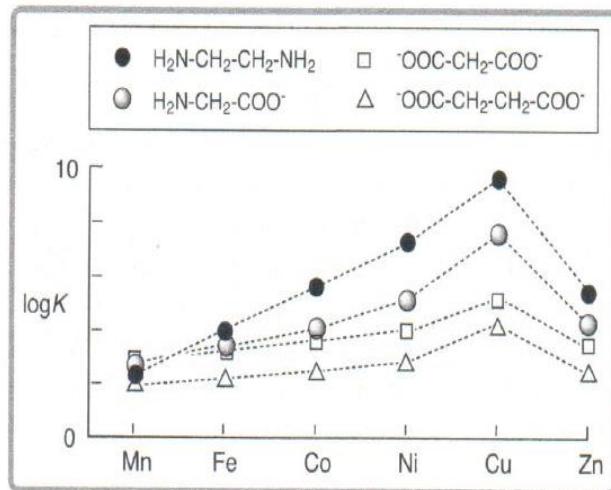
1). Ethylenediamine
 $\text{NH}_2\text{-CH}_2\text{-CH}_2\text{-NH}_2$

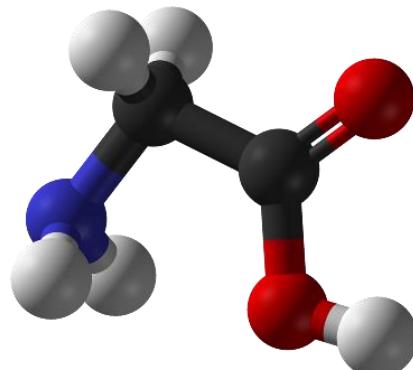


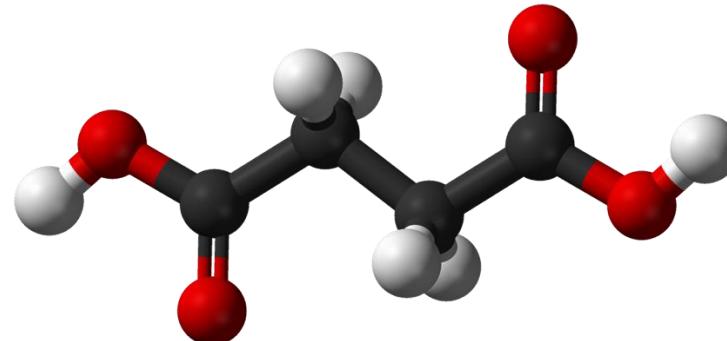
2). Malonic acid
 $-\text{O}_2\text{C-CH}_2\text{-CO}_2^-$



3). Glycine
 $\text{NH}_2\text{-CH}_2\text{-CO}_2^-$

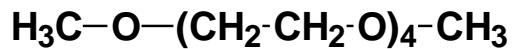


- A. $3>2>1>4$
- B. $1>3>2>4$
- C. $3>1>4>2$
- D. $2>3>1>4$
- E. $4>1>2>3$


4). Succinic acid
 $-\text{O}_2\text{C-CH}_2\text{-CH}_2\text{-CO}_2^-$

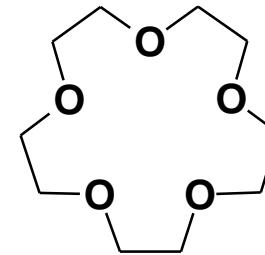
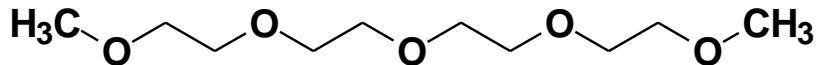

Exercise: Predict the order of stabilities for the following with Ni^{2+}

2). Malonic acid
 $-\text{O}_2\text{C}-\text{CH}_2-\text{CO}_2^-$

3). Glycine
 $\text{NH}_2-\text{CH}_2-\text{CO}_2^-$

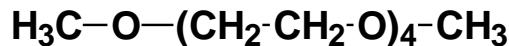

4). Succinic acid
 $-\text{O}_2\text{C}-\text{CH}_2-\text{CH}_2-\text{CO}_2^-$

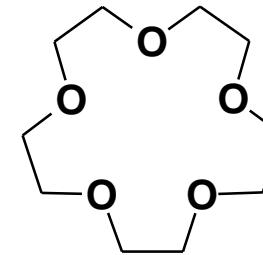
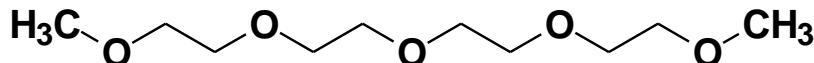
Answer: With Ni^{2+} being intermediate, it makes it difficult to apply HSAB. Considering Bronsted basicity and ring size we have the following stabilities $1 > 3 > 2 > 4$



Macrocyclic effect

Which one of the below examples forms the most stable complex? Why?

Linear Tetraglyme or the 15-crown-5 analog....

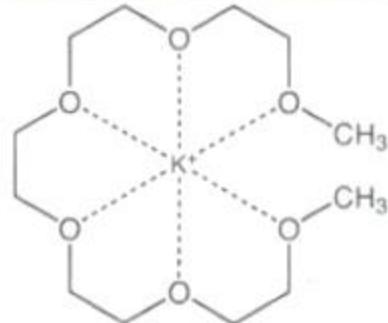

15P5



Macrocyclic effect

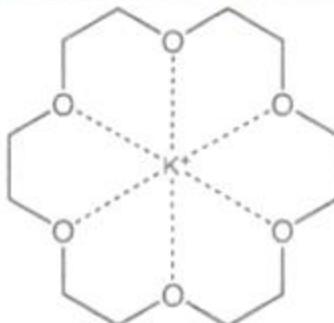
Which one of the below examples forms the most stable complex? Why?

Linear Tetraglyme or the 15-crown-5 analog....

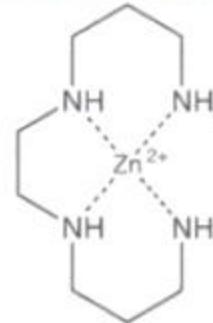
15P5



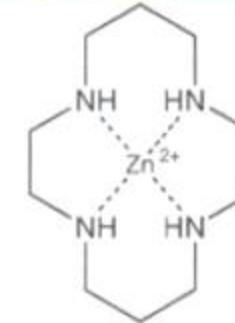
$$\text{Log } K_f = 5.04$$


$$\text{Log } K_f = 6.48$$

Some other common examples....


$$\log K = 2.1$$

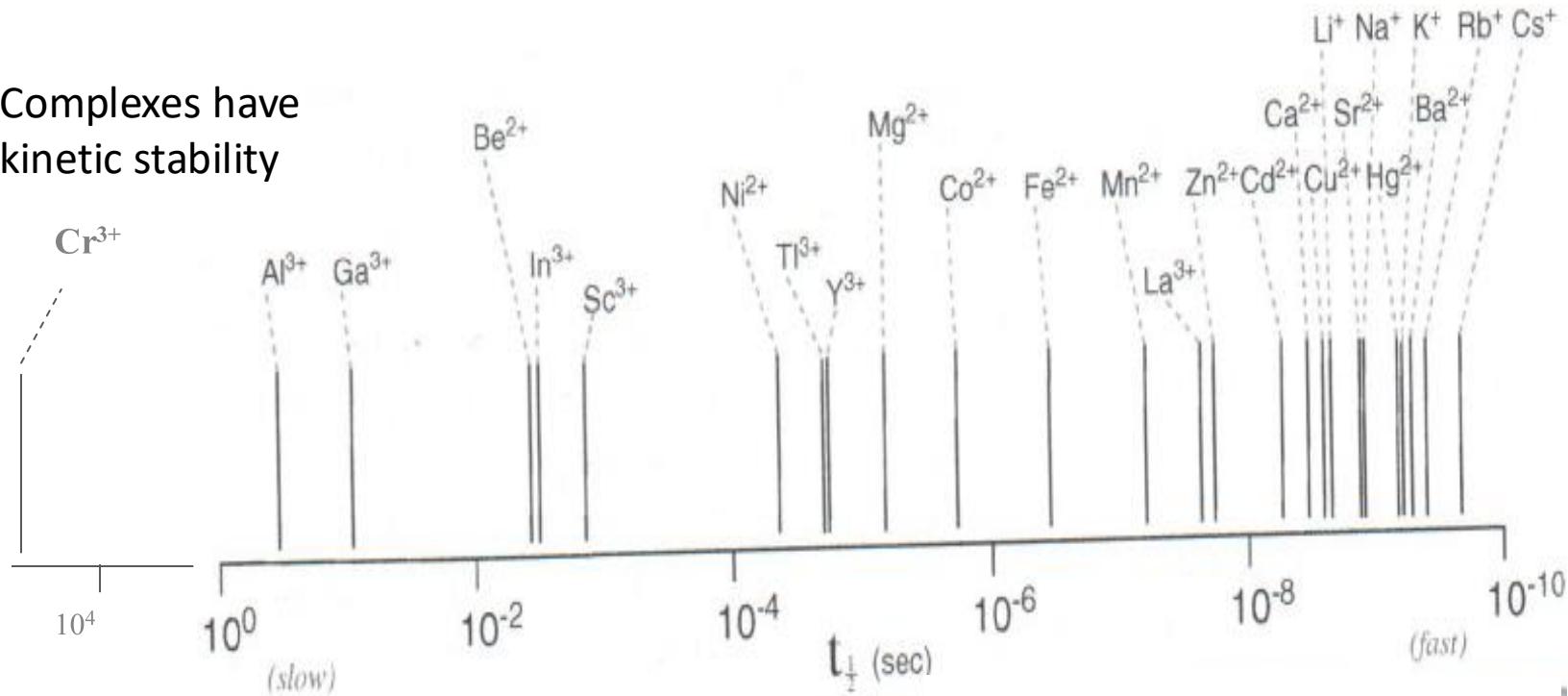
linear pentaglyme


$$\log K = 6.1$$

macrocyclic 18-crown-6

$$\log K = 11.2$$

linear 3,2,3-tet


$$\log K = 15.3$$

macrocyclic cyclam

Kinetics – How do we get to equilibrium?

Influenced by charge, radius, and electronic configuration

Complexes have kinetic stability

General Trends:

Labile, metal complexes that have electrons in the eg^* orbitals. Some examples include high spin Co^{2+} ($t_{2g}^5 e_g^2$) and high spin Fe^{2+} ($t_{2g}^4 e_g^2$) and all complexes with less than 3 electrons.

Inert, octahedral d^3 complexes such as Cr^{3+} ($t_{2g}^3 e_g^0$) and low-spin d^4 , d^5 , and d^6 complexes.